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Abstract 

 
The classical approach to the torsional vibration analysis of the marine propulsion plants deals 
exclusively with steady-state vibration, analyzed in a frequency domain only. However, some 
phenomena cannot be properly addressed without carrying out the more demanding, transient 
torsional vibration analysis, performed in the time domain. Examples of such events include passing 
through a barred speed range, clutching heavy components, and propeller−ice interactions during a 
voyage on icy seas. In this paper, a mathematical model of transient torsional vibration analysis is 
presented. The system response is based on the modified standard computer code for torsional 
vibration analysis, and the time integration of the system response is performed by utilizing a fifth-
order and sixth-order Runge-Kutta-Verner algorithm. Example analyses of passing through a barred 
speed range are also provided and the measurement results compared. 
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ANALIZA PROLAZNIH TORZIJSKIH VIBRACIJA BRODSKIH PORIVNIH 

POSTROJENJA 
 

Sažetak 
 
Klasični pristup analizi torzijskih vibracija brodskih porivnih postrojenja isključivo obrađuje 
stacionarne vibracije, analizirane u frekvencijskom području. Međutim, postoje pojave koje se ne 
mogu ispravno obraditi bez zahtjevnije analize prolaznih torzijskih vibracija, provedene u 
vremenskomu području. Neki primjeri takvih pojava su prolaz kroz zabranjeno područje brzina 
vrtnje, ukapčanje masivnih prigona i međudjelovanje brodskoga vijka i leda tijekom plovidbe 
zaleđenim morima. U ovomu radu dan je matematički model postupka analize prolaznih torzijskih 
vibracija. Odziv sustava se određuje dorađenim standardnim računalnim programom za analizu 
torzijskih vibracija, a njegova integracija po vremenu vrši se primjenom Runge-Kutta-Vernerova 
algoritma petoga i šestoga reda. U radu su dani primjeri analize prolaza kroz zabranjeno područje 
brzina vrtnje, kao i usporedba s rezultatima mjerenja. 
 
Ključne riječi: analiza, porivno postrojenje, prolazne vibracije, torzijske vibracije 
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1. Introduction 

Propulsion plant reliability is of the utmost importance for the safe operation of vessels. 
Where the design of marine propulsion plants is concerned, torsional vibration behavior is one of 
the most important factors that define its reliability. 

The classical approach to the torsional vibration analysis (TVA) of marine propulsion plants 
deals exclusively with steady-state vibration, analyzed in a frequency domain only [1]. However, 
some phenomena cannot be properly addressed without carrying out the more demanding, transient 
TVA, performed in the time domain. Examples of such events include passing through a barred 
speed range [2], clutching heavy components [3], the ship's crash astern operation [4], and  
propeller−ice interactions during a voyage on icy seas [5, 6].  

Transient TVAs are calculation-intensive, time-consuming processes that require multiple 
runs and that are greatly affected by the user's interaction. In general, such analyses can be 
performed independent of steady-state TVAs by using commercial software tools [5] or by utilizing 
customized software [2, 3, 7]. Various approaches have been applied in the literature, from modal 
analysis [7] and the Newmark method [2] to the specific application of bond graph modeling [3]. In 
addition, some authors have preferred simplified plant models [5], while others have employed the 
full one [2]. 

In this paper, a mathematical model of transient TVA is presented. The transient TVA module 
is built as a new feature of the existing TVA tool [8]. Therefore, they both share the same system 
models and same data files. In addition, for the time integration of the system response, a fifth-order 
and sixth-order Runge-Kutta-Verner algorithm is utilized. 

The remainder of this paper is organized as follows. In Section 2, the basics of the TVA are 
presented. Then, in Section 3, the numerical procedure of the transient TVA is defined. The two 
application examples of the proposed procedure are described in Section 4. Then, in Section 5, 
questions arising from the study are discussed. Finally, in Section 6, conclusions are provided. 

2. TVA 

The basis of the propulsion plant TVA is an equation of motion, written in a matrix form as 

,+ + =J C K f&& &ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ  (1) 

where J is the inertia matrix, C is the damping matrix, K is the torsional stiffness matrix, ϕϕϕϕ  is the 
displacement vector, and f is the vibration excitation vector. Equation (1) is a non-homogeneous 
system of second-order linear ordinary differential equations with constant coefficients. The i-th 
equation in system (1) has the form 

( ) ( ), , , 1,2,..., ,i i i i i i j i i j j i i j i
j j

J c k k c f i nϕ ϕ ϕ ϕ ϕ ϕ ϕ⋅ − ⋅ − ⋅ + − ⋅ + − ⋅ = =∑ ∑&& & & &  (2) 

where iJ  is the node inertia, ic  is the absolute damping, ik  is the absolute stiffness, ,i jk  is the shaft 

torsional stiffness, ,i jc  is the relative damping, and i and j are the node indices and adjacent node 

indices, respectively. The number of equations in the system, n, corresponds to the number of nodes 
(lumped masses) in the torsional vibration model. 

2.1. Steady-state TVA 

Where steady-state TVA is concerned, by utilizing the proper substitution (see [7, 9, 10]), Eq. (1) is 
transformed into a system of algebraic equations with complex coefficients: 

2 ˆˆ ˆ ˆ ,jΩ Ω− + + =J C K fϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕ  (3) 
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where Ω  is the excitation frequency, j is the imaginary unit, and ϕ̂ϕϕϕ  and f̂  are the vectors of the 
complex angular displacement and excitation amplitudes, respectively. 

The excitation frequency Ω  is defined as a product: 

,
30

rn
m m

π
Ω ω

⋅
= ⋅ = ⋅  (4) 

where m  is the order of excitation, ω  is the angular velocity, and rn  is the engine speed, min-1. 

After the determination of the natural frequencies and angular displacements of all nodes (
, 1,2,...,i i nϕ = ), the remaining process is straightforward [7, 10]. The analysis results are usually 

summarized in graphic form, as depicted in Fig. 1. 

  
 Fig. 1. Typical steady-state TVA results 

 Slika 1. Rezultati uobičajene analize stacionarnih torzijskih vibracija 

2.2. Transient TVA 

If the transient TVA is needed, the basis is the same as in the case of the steady-state TVA: 
the equation of motion, Eq. (1). However, the follow-up treatment is completely different. Since the 
vibration excitation { }1 2, ,..., nf f f=f  is a function of time t, 

ˆ ,j t
i if f e Ω

= ⋅  (5) 

the vibration response 

 

{ }

{ }

{ }

1 2

1 2

1 2

 = , ,..., ,

 = , ,..., ,

 = , ,..., ,

n

n

n

ϕϕϕϕ

ϕϕϕϕ

ϕϕϕϕ

& & & &

&& && && &&

ϕ ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ ϕ

 (6) 

is a function of time, too. Therefore, in order to obtain the vibration response, the time integration 
of the differential equations system, Eq. (1), is needed. Unfortunately, analytical solutions can only 
be found for certain simple cases of Eq. (1) [11] and, therefore, a numerical procedure should be 
employed. 
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3. Numerical procedure 

3.1. General procedure 

By taking Eqs. (5) and (6) into account, system (1) can be viewed as a 

( ), , , = ,t ϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕϕ ϕ ϕF 0& &&  (7) 

i.e., as a system of n equations in 3n unknowns. In order to solve this system, the following three 
specific measures are required: 

- Initial conditions: ( )0 0tϕ ϕϕ ϕϕ ϕϕ ϕ=  and ( )0 0tϕ ϕϕ ϕϕ ϕϕ ϕ=& &  ensure the viability of the foregoing procedure; 

if unknown, the simple condition 0 0= = ϕ ϕϕ ϕϕ ϕϕ ϕ 0&  can be applied. 

- New vector variable (additional set of equations): by defining a new vector variable 

,ϕϕϕϕ=v &  (8) 

 the second-order differential equation may be rewritten as a pair of first-order differential 
equations [12]. Then, Eq. (7) can be expressed by 

( ), , , = ,t ϕϕϕϕF v v 0&  (9) 

while the number of equations rises to 2n. 

- System acceleration: the remaining n equations are obtained by substituting Eq. (8) into Eq. 
(2) and solving v&  [10]: 

( ) ( ), ,

.

i i i i i j i i j j i i j
j j

i i
i

f c v k k v v c

v
J

ϕ ϕ ϕ

ϕ

− ⋅ − ⋅ + − ⋅ + − ⋅

≡ =

∑ ∑
&&&  (10) 

Equation (10) should then be evaluated by using the most recent values of iϕ  and iv . 

3.2. Numerical integration 

The numerical integration approach to solving the system of equations of motion, Eq. (1), 
belongs to so-called time-marching schemes [11], where the unknown analytical solution is 
approximated by a series of discrete responses obtained at the preset number of 1m +  data points: 

0 , 0,1,2,..., ,kt t k t k m∆= + ⋅ =  (11) 

where t∆  is the time step and k is the time step counter. 

Numerical integration by using a time-marching scheme is organized as follows. At the start 
of the process ( 0t t= ), two initial conditions ( ,0iϕ  and ,0 ,0i iv ϕ≡ & ) enable us to determine the system 

acceleration, ,0 ,0i iv ϕ≡ &&& . Thereafter, we use a numerical integration algorithm to approximate the 

values of the displacements and velocities at the end of the time step interval ( ,1iϕ  and ,1 ,1i iv ϕ≡ & ), 

which completes the computation of the first time step. The remaining time steps are then treated 
similarly. In this study, to integrate the differential equations, a fifth-order and sixth-order Runge-
Kutta-Verner method is utilized (IMSL routine DIVPRK), as provided in [13]. 

4. Examples 

The proposed procedure is tested against two transient torsional vibration measurement sets. 
These measurement results were compiled during official sea trials. 
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4.1. Example 1 - Engine startup transient motion 

This example deals with the startup phase of a low-speed two-stroke propulsion plant, 
equipped with a CP propeller, set to zero-pitch during the run-up. The steady-state torsional 
vibration response is provided in Fig. 1, while the transient one is depicted in Fig. 2. During the 
timeframe shown, the propulsion plant was started up and run at 80 min-1, some five seconds after 
the startup. 

Fig. 3 presents the numerical simulation results obtained by using the proposed procedure. 
The simulation model comprised 13 nodes, and the majority of the data prepared for the standard 
steady-state analysis were used during the numerical simulation. The only exception was omitting 
the shaftline relative damping, since its inclusion caused numerical difficulties for the Runge-Kutta-
Verner integration process (i.e. inability to satisfy the error conditions). The integration time step 
was 0,001 s. 

 

Fig. 2. Main engine startup measurement results 

Slika 2. Rezultati mjerenja upućivanja glavnoga stroja 

 

Fig. 3. Main engine startup simulation results 

Slika 3. Rezultati simulacije upućivanja glavnoga stroja 

It should be noted that the majority of the first second (from t = 0s to t = 1,3s) system 
response is mainly determined by an inflow of compressed starting air, rather than the ordinary 
diesel engine combustion process. Hence, it is reasonable to expect a lower simulated vs. measured 
correlation in that timeframe. When comparing the steady state (Fig. 1) with the transient vibration 
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responses (Figs. 4 and 5), a significant stress level reduction is noted in the latter case, attributed to 
the rapid passing through of a barred speed range. 

4.2. Example 2 - Escape from the barred speed range 

This example deals with a bulk carrier FP propeller propulsion plant running at the major 
resonance at 60 min-1. At t = 16 s, the engine speed ramps to 65 min-1. The measured transient 
response is provided in Fig. 4, while the corresponding numerical simulation is shown in Fig. 5. The 
simulation model consists of 11 nodes, resembling exactly the model used during the steady-state 
analysis. The integration time step was again 0,001 s. 

When comparing the simulated with the measured stress amplitudes, a steeper stress reduction 
is noted in the former case as well as more rendered resonance in the region of t = 19 s. Otherwise, 
the simulated transient vibration amplitudes agree with those of the steady-state TVA (data not 
shown). 

 

Fig. 4. Main engine escape from the barred speed range measurement results 

Slika 4. Rezultati mjerenja izlaska iz zabranjenoga područja brzina vrtnje 

 

Fig. 5. Main engine escape from the barred speed range simulation results 

Slika 5. Rezultati simulacije izlaska iz zabranjenoga područja brzina vrtnje 
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5. Discussion 

The performed numerical simulations showed certain basic features of the proposed 
procedure. The proposed numerical procedure is capable of reasonably rendering the transient 
phenomena inside the propulsion plant. The full propulsion plant model may also be safely used as 
a basis for performing such simulations (as found by [2]), despite contrary views expressed in [5, 
14]. Further, the numerical computations showed robust behavior and they were found not to be too 
sensitive to the time step size, as shown in Table 1. 

Table 14. Influence of the integration step size on the simulation results (Example 1) 

Tablica 1. Upliv veličine koraka integracije na rezultate simulacije (Primjer 1) 

t∆ /s maxτ /MPa minτ /MPa 

110−  38,67 −33,96 

210−
 

42,86 −42,02 

310−  43,64 −42,80 

410−  43,64 −42,81 

510−  43,64 −42,81 

In accordance with the findings expressed in [5], the simulation results were found to be 
greatly affected by phasing the crank angle. This finding means that different system responses can 
be obtained by changing the starting moment of the simulated transient phenomena. In addition, it 
means that multiple simulations are necessary in order to find the most adverse transient response. 

6. Conclusions 

In this paper, a numerical procedure for the transient TVA of marine propulsion plants was 
proposed and examined. The performed numerical simulations showed reasonable agreement 
between the simulated and measured transient responses. In addition, the proposed procedure was 
found to be stable and not too sensitive to the selected integration time step size. 
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